考研院校库 > 南开大学 > 导师介绍 > 正文

南开大学陈省身数学研究所导师简介:陈景灵

作者:聚创南开考研网-张老师 点击量: 1737 发布时间: 2018-09-13 10:47 【微信号:扫码加咨询】

热门关键词南开大学 陈省身数学研究所导师简介:陈景灵 研究生院校招生

据悉,南开大学陈省身数学研究所导师简介:陈景灵已公布,聚英南开大学考研网小编为考研同学整理如下内容:



姓名:陈景灵

招生专业:理论物理

主要职务:教授 

简历:19909月至19947月南开大学物理系,获理学学士学位;

19949月至19977月南开大学物理系理论物理专业,获理学硕士学位;

19979月至20007月南开数学研究所理论物理专业,获理学博士学位;

20007月至20023月北京应用物理与计算数学研究所,博士后;

200011月至20014月新加坡国立大学物理系,访问学者;

20024月至20037月新加坡国立大学物理系,访问学者;

20038月至20057月新加坡国立大学物理系,新加坡新世纪学者;

20058月至今 南开数学研究所,教授。

 

研究方向:量子物理与量子信息

主要研究方向:

[1] D. L. Deng, C. F. Wu, J. L. Chen, S. J. Gu, S. X. Yu, and C. H. Oh, Bell nonlocality in conventional and topological quantum phase transitions, Physical Review A 86, 032305 (2012).
[2] Z. H. Chen, Z. H. Ma, J. L. Chen, S. Severini, Improved lower bounds on genuine-multipartite-entanglement concurrence, Physical Review A 85, 062320 (2012).
[3] H. Y. Su, J. L. Chen, C. F. Wu, S. X. Yu, and C. H. Oh, Quantum contextuality in a one-dimensional quantum harmonic oscillator, Physical Review A 85 , 052126 (2012).
[4] F. L. Zhang and J. L. Chen, Irreducible multi-qutrit correlations in Greenberger-Horne-Zeilinger type states, Physical Review A 84, 062328 (2011).
[5] Z. H. Ma, Z. H. Chen, J. L. Chen, C. Spengler, A. Gabriel, and M. Huber, Measure of genuine multipartite entanglement with computable lower bounds, Physical Review A 83, 062325 (2011).
[6] J. L. Chen, D. L. Deng, H. Y. Su, C. F. Wu, and C. H. Oh, Detecting Full N-Particle Entanglement in Arbitrarily High-Dimensional Systems with Bell-Type Inequality, Physical Review A 83, 022316 (2011) .
[7] D. L. Deng, C. F. Wu, J. L. Chen, and C. H. Oh, Fault Tolerant Greenberger-Horne-Zeilinger Paradox Based on Non-Abelian Anyons, Physical Review Letters 105, 060402 (2010).
[8] F. L. Zhang, B Fu, and J. L. Chen, Higgs algebraic symmetry in two-dimensional Dirac equation, Physical Review A 80, 054102 (2009).
[9] Hongwei Chen, Mingguang Hu, Jingling Chen, and Jiangfeng Du, Observation of geometric phases for three-level systems using NMR interferometry, Physical Review A 80, 054101 (2009).
[10] D. L. Deng, Z. S. Zhou, and J. L. Chen, Svetlichny's approach to detecting genuine multipartite entanglement in arbitrary high-dimensional systems, Physical Review A 80, 022109 (2009).
[11] J. L. Chen and D. L. Deng, Bell inequality for qubits based on the Cauchy-Schwarz inequality, Physical Review A 79, 012115 (2009).
[12] J. L. Chen and D. L. Deng,“Tight correlation-function Bell inequality for multipartite d-dimensional systems, Physical Review A 79, 012111 (2009).
[13] M. G. Hu, D. L. Deng and J. L. Chen, Proposed all-versus-nothing violation of local realism in the Kitaev spin-lattice model, Rapid Communication in Physical Review A 79 (R), 010301 (2009).
[14] Z. H. Ma, F.L. Zhang and J.L. Chen, Geometric observation for A-fidelity and its relation with Bures fidelity, Physical Review A 78, 064305 (2008).
[15] F.L. Zhang, B. Fu, and J.L. Chen, Dynamical symmetry of Dirac hydrogen atom with spin symmetry and its connection with Ginocchio's oscillator, Rapid Communication in Physical Review A 78, 040101(R) (2008).
[16] J. L. Chen, C. W. Wu, L. C. Kwek, and C. H. Oh, Bell inequalities for three particles, Physical Review A 78, 032107 (2008).
[17] J.L. Chen, D.L. Deng, and M.G. Hu, Gisin's theorem for two d-dimensional systems based on the Collins-Gisin-Linden-Masser-Popescu inequality, Rapid Communication in Physical Review A 77, 060306(R) (2008).
[18] C. Wu, J.L. Chen, L.C. Kwek, and C.H. Oh, Correlation-function Bell inequality with improved visibility for three qubits, Physical Review A 77, 062309 (2008).
[19] J.L. Chen, D.L. Deng, and M.G. Hu, SO(4) symmetry in the relativistic hydrogen atom, Physical Review A 77, 034102 (2008).
[20] J.L. Chen, K. Xue, and M.L. Ge, Braiding transformation, entanglement swapping and Berry phase in entanglement space, Physical Review A 76, 042324 (2007).
[21] W.L. Yang and J.L. Chen, Relation between three-qubit entanglement invariants and two-qubit concurrence, Physical Review A 76, 034301 (2007).
[22] W.L. Yang and J.L. Chen, Berry's phase for coherent states of Landau levels, Physical Review A 75, 024101 (2007).
[23] J.L. Chen, C.F. Wu, L.C. Kwek, C.H. Ohand M.L. Ge, Violating Bell inequalities maximally for two d-dimensional systems, Physical Review A 74, 032106 (2006).
[24] Chunfeng Wu, Jing-Ling Chen, L.C. Kwek, and C.H. Oh, Quantum nonlocality of N-qubit W states, Physical Review A 73, 012310 (2006).
[25] J.L. Chen, C.F. Wu, L.C. Kwek, D. Kaszlikowski, M. Zukowski, and C.H. Oh, Multi-component Bell inequality and its violation for continuous variables systems, Physical Review A 71, 032107 (2005)
[26] C.F. Wu, J.L.Chen, L.C. Kwek, C.H. Oh, and K. Xue, Continuous multipartite entangled state in the Wigner presentation and violation of Zukowski-Brunker inequality, Physical Review A 71, 022110 (2005)
[27] J.L. Chen, C.F. Wu, L.C. Kwek, and C.H. Oh, Gisins Theorem for Three Qubits, Physical Review Letters 93, 140407 (2004).
[28] A. Acín, J.L. Chen, N. Gisin, D. Kaszlikowski, L.C. Kwek, C.H. Oh, and M. Zukowski, Coincidence Bell Inequality for Three Three-Dimensional Systems, Physical Review Letters 92, 250404 (2004).
[29] Thomas Durt, Dagomir Kaszlikowski, Jing-Ling Chen, and L. C. Kwek, Security of quantum key distributions with entangled qudits, Physical Review A 69, 032313 (2004).
[30] D.M. Tong, L.C. Kwek, C.H. Oh, J.L. Chen, and L. Ma, Operator-sum representation of time-dependent density operators and its applications, Physical Review A 69, 054102 (2004).
[31] L.B. Fu, J.L. Chen, and S.G. Chen, Maximal violation of Clauser-Horne-Shimony-Holt inequality for four-level systems, Physical Review A 69, 034305 (2004).
[32] L.B. Fu, J.L. Chen, and X.G. Zhao, Maximal violation of Clauser-Horne-Shimony-Holt inequality for two qutrits, Physical Review A 68, 022323 (2003).
[33] D.M. Tong, J.L. Chen, L.C. Kwek, C.H. Lai, and C.H. Oh, General formalism of Hamiltonians for realizing a prescribed evolution of a qubit, Physical Review A 68, 062307 (2003).
[34] K. Singh, D.M. Tong, K. Basu, J.L. Chen, J.F. Du, Geometric phases for nondegenerate and degenerate mixed states, Physical Review A 67, 032106 (2003).
[35] J.L. Chen, L.C. Kwek and C.H. Oh, Quartic anharmonic oscillator and non-Hermiticity, Physical Review A 67, 012101 (2003).
[36] D. Kaszlikowski, L.C. Kwek, J.L. Chen and C.H. Oh, Multiparticle bound entanglement and three-setting Bell inequalities, Physical Review A 66, 052309 (2002).
[37] J.L. Chen, L. Fu, A.A. Ungar and X.G. Zhao, Alternative fidelity measure between two states of an N-state quantum system, Physical Review A 65, 054304 (2002).
[38] J.L. Chen, L.C. Kwek and C.H. Oh, Noisy quantum game, Physical Review A 65, 052320 (2002).
[39] J.L. Chen, L. Fu, A.A. Ungar and X.G. Zhao, Degree of entanglement of two qubits, Physical Review A 65, 044303 (2002).
[40] D. Kaszlikowski, L.C. Kwek, J.L. Chen, M. Zukowski and C.H. Oh, Clauser-Horne inequality for three-state systems, Physical Review A 65, 032118 (2002).
[41] J.L. Chen, L. Fu, A.A. Ungar and X.G. Zhao, Geometric observation for Bures fidelity between two states of a qubit, Physical Review A 65, 024303 (2002).
[42] H. Jing, J.L. Chen and M.L. Ge, Squeezing effects of an atom laser: Beyond the linear model, Physical Review A 65, 015601 (2002).
[43] J.L. Chen, D. Kaszlikwoski, L.C. Kwek, C.H. Oh and M. Zukowski, Entangled three-state systems violate local realism more strongly than qubits: An analytic proof, Physical Review A 64, 052109 (2001).
[44] H. Jing, J.L. Chen and M.L. Ge, Quantum dynamical theory for squeezing an output of a Bose-Einstein condensate, Physical Review A 63, 015601 (2001).
[45] J.L. Chen, M.L. Ge and K. Xue, Possible experimental measure theory for the XXX-Heisenberg chain , Physical Review E 60, 1486-1493 (1999).

获奖情况:1.2003年度“新加坡新世纪学者” [Singapore Millennium Foundation (SMF) Scholar]

2.2006年度中国国家教育部“新世纪优秀人才支持计划”

联系方式:办公室:省身楼807房间 Tel.:022-23509287Email:chenjl@nankai.edu.cn



以上是聚创考研网为考生整理的"南开大学陈省身数学研究所导师简介:陈景灵"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。

分享:
学习QQ群
MORE
浏览过该网页的还看了 MORE
聚创考研网校微信 聚创考研网校微信