作者:聚创南开考研网-张老师 点击量: 1074 发布时间: 2018-09-13 10:35 【微信号:扫码加咨询】
热门关键词:南开大学 陈省身数学研究所导师简介:符方伟 研究生院校招生
据悉,南开大学陈省身数学研究所导师简介:符方伟已公布,聚英南开大学考研网小编为考研同学整理如下内容:
姓名:符方伟
招生专业:应用数学
主要职务:陈省身 数学研究所教授 , 博士生导师
中国密码学会理事 《电子与信息学报》编委和《应用数学》编委
简历:1980 年 9 月至 1984 年 7 月南开大学数学系, 获理学学士学位;
1984 年 9 月至 1987 年 7 月南开大学数学系, 获理学硕士学位;
1987 年 9 月至 1990 年 12 月南开大学数学系, 获理学博士学位;
1989 年 10 月至 1990 年 10 月德国 Bielefeld 大学数学系,开展联合培养博士生的研究工作;
1987 年 7 月至 2007 年 4 月南开大学数学 科学学院, 1989 年 7 月为讲师, 1993 年 12 月为副教授, 1995 年 12 月为教授, 1997 年 1 月为博士生导师;
1996 年 10 月至 1997 年 10 月德国 Essen 大学实验数学研究所,访问学者;
1998 年 10 月至 1999 年 1 月, 1999 年 7 月至 1999 年 10 月, 2000 年 4 月至 2000 年 10 月,
2002 年 2 月至 2007 年 3 月新加坡国立大学 Temasek 研究所编码与密码研究组, Research Scientist (A) ;
2007 年 4 月至今南开大学陈省身数学研究所, 教授 , 博士生导师;
研究方向:编码理论,密码学,信息论
主要研究方向:
[1] Fu Fang-Wei, A.J. Han Vinck and Shen Shi-Yi, On the constructions of constant weight codes, IEEE Transactions on Information Theory, vol.44, no.1, pp.328-333, 1998.
获奖情况:
1992 年获教育部资助优秀年轻教师基金;
入选 2000 年度教育部跨世纪优秀人才培养计划;
2000 年度国务院政府特殊津贴;
第一批天津市 131 人才培养计划第一梯队人选;
联系方式:办公室 : 省身楼 503 房间, 电话 :022-23509427 , Email:fwfu@nankai.edu.cn
2001 年 7 月至 2002 年 2 月香港中文大学信息工程系,访问学者;
[2] Fu Fang-Wei and Shen Shi-Yi, Hypothesis testing for arbitrary varying source with exponential-type constraint, IEEE Transactions on Information Theory, vol.44, no.2, pp.892-895, 1998.
[3] Fu Fang-Wei and Xia Shu-Tao, Binary constant weight codes for error detection, IEEE Transactions on Information Theory, vol.44, no.3, pp.1294-1299, 1998.
[4] Fu Fang-Wei and A.J. Han Vinck, On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph, IEEE Transactions on Information Theory, vol.45, no.1, pp.308-314, 1999.
[5] Fu Fang-Wei, T. Klove and Shen Shi-Yi, On the Hamming distance between two i.i.d. random vectors over GF(q), IEEE Transactions on Information Theory, vol.45, no.2, pp.803-807, 1999.
[6] Chen Lusheng and Fu Fang-Wei, On the constructions of new resilient functions from old ones, IEEE Transactions on Information Theory, vol.45, no.6, pp.2077-2082, 1999.
[7] Fu Fang-Wei, T. Klove and Xia Shu-Tao, The undetected error probability threshold of m-out-of-n codes, IEEE Transactions on Information Theory, vol.46, no.4, pp.1597-1599, 2000.
[8] Luo Yuan, Fu Fang-Wei and V.K. Wei, On the depth distribution of linear codes, IEEE Transactions on Information Theory, vol.46, no.6, pp.2197-2203, 2000.
[9] Fu Fang-Wei and R.W. Yeung, On the capacity and error-correcting codes of write-efficient memories, IEEE Transactions on Information Theory, vol.46, no.7, pp.2299-2314, 2000.
[10] Fu Fang-Wei, T. Klove, Luo Yuan and V.K. Wei, On the Svanstrom bound for ternary constant weight codes, IEEE Transactions on Information Theory, vol.47, no.5, pp.2061-2064, 2001.
[11] C. Ding, Fu Fang-Wei, T. Klove, and V.K. Wei, Constructions of permutation arrays, IEEE Transactions on Information Theory, vol.48, no.4, pp.977-980, 2002.
[12] Fu Fang-Wei and R.W. Yeung, On the rate-distortion region for multiple descriptions, IEEE Transactions on Information Theory, vol.48, no.7, pp.2012-2021, 2002.
[13] Fu Fang-Wei, T. Klove, and V.K. Wei, On the undetected error probability for binary codes, IEEE Transactions on Information Theory, vol.49, no.2, pp.382-390, 2003.
[14] Luo Yuan, Fu Fang-Wei, A.J. Han Vinck, and W.D. Chen, On constant composition codes over Z_q, IEEE Transactions on Information Theory, vol.49, no.11, pp.3010-3016, 2003.
[15] Fu Fang-Wei, S. Ling, and C.P. Xing, New lower bounds and constructions for binary codes correcting asymmetric errors, IEEE Transactions on Information Theory, vol.49, no.12, pp.3294-3299, 2003.
[16] Fu Fang-Wei, A.J. Han Vinck, V.K. Wei, and R.W. Yeung, On the capacity of write-unidirectional memories with nonperiodic codes, IEEE Transactions on Information Theory, vol.50, no.4, pp.649-656, 2004.
[17] Fu Fang-Wei and T. Klove, Two constructions of permutation arrays, IEEE Transactions on Information Theory, vol.50, no.5, pp. 881-883, 2004.
[18] Xia Shu-Tao, Fu Fang-Wei, Y. Jiang, and S. Ling, The probability of undetected error for binary constant weight codes, IEEE Transactions on Information Theory, vol.51, no.9, pp.3364-3373, 2005.
[19] Y.S. Tang, S. Ling, and Fu Fang-Wei, On the reliability-order-based decoding algorithms for binary linear block codes, IEEE Transactions on Information Theory, vol.52, no.1, pp.328-336, 2006.
[20] Xia Shu-Tao, Fu Fang-Wei, and S. Ling, A lower bound on the probability of undetected error for binary constant weight codes, IEEE Transactions on Information Theory, vol.52, no.9, pp. 4235-4243, 2006.
[21] Xia Shu-Tao and Fu Fang-Wei, Minimum pseudo-weight and minimum pseudo-codewords of LDPC codes, IEEE Transactions on Information Theory, vol.53, no.1, pp.480-485, 2008.
[22] Jiang Yong, Xia Shu-Tao, and Fu Fang-Wei, Stopping set distributions of some Reed-Muller codes, IEEE Transactions on Information Theory, vol.57, no.9, pp.6078-6088, 2011.
[23] Fu Fang-Wei, V.K. Wei and R.W. Yeung, On the minimum average distance of binary codes: Linear programming approach, Discrete Applied Mathematics, vol.111, no.3, pp.265-283, July 2001.
[24] Fu Fang-Wei and V.K. Wei, Self-complementary balanced codes and quasi-symmetric designs, Designs, Codes and Cryptography, vol.27, no.3, pp.271-279, 2002.
[25] Fu Fang-Wei, T. Klove, Luo Yuan, and V.K. Wei, On equidistant constant weight codes, Discrete Applied Mathematics, vol.128, no.1, pp.157-164, 2003.
[26] Chen Lusheng, Fu Fang-Wei and V.K. Wei, On the constructions and nonlinearity of binary vector-output correlation-immune functions, Journal of Complexity, vol.20, no.2-3, pp.266-283, 2004.
[27] Fu Fang-Wei, H. Niederreiter, and M. Su, The expectation and variance of the joint linear complexity of random periodic multisequences, Journal of Complexity, vol.21, no.6, pp. 804—822, 2005.
[28] Xia Shu-Tao and Fu Fang-Wei, On the minimum pseudo-codewords of LDPC codes, IEEE Communication Letters, vol.10, no.5, pp. 363—365, 2006.
[29] Xia Shu-Tao and Fu Fang-Wei, On the stopping distance of finite geometry LDPC codes, IEEE Communication Letters, vol.10, no.5, pp. 381—383, 2006.
[30] Fu Fang-Wei and Xia Shu-Tao, The characterization of binary constant weight codes meeting the bound of Fu and Shen, Designs, Codes and Cryptography, vol.43, no.1, pp. 9-20, 2007.
[31] Fu Fang-Wei and H. Niederreiter, On the counting function of the lattice profile of periodic sequences, Journal of Complexity, vol.23, no.4-6, pp. 423-435, 2007.
[32] Xia Shu-Tao and Fu Fang-Wei, Undetected error probability of q-ary constant weight codes, Designs, Codes and Cryptography, vol.48, no.2, pp. 125-140, 2008.
[33] Xia Shu-Tao, Fu Fang-Wei, and Y. Jiang, On the minimum average distance of binary constant weight codes, Discrete Mathematics, vol.308, no.17, pp.3847-3859, 2008.
[34] Xia Shu-Tao and Fu Fang-Wei, Johnson type bounds on constant dimension codes, Designs, Codes and Cryptography, vol.50, no.2, pp. 163-172, 2009.
[35] Fu Fang-Wei, H. Niederreiter, and F. Ozbudak, Joint linear complexity of multisequences consisting of linear recurring sequences, Cryptography and Communications, vol.1, no.1, pp. 3-29, 2009.
[36] Fu Fang-Wei, H. Niederreiter, and F. Ozbudak, Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences, Finite Fields and Their Applications, vol.15, no.4, pp.475-496, 2009.
[37] Gao Zhi-Han and Fu Fang-Wei, The minimal polynomial over F_{q} of linear recurring sequence over F_{q^{m}}, Finite Fields and Their Applications, vol.15, no.6, pp.774-784, 2009.
[38] Gao Zhi-Han and Fu Fang-Wei, The minimal polynomial of sequence obtained from componentwise linear transformation of linear recurring sequence, Theoretical Computer Science, vol.411, no.44-46, pp.3883-3893, 2010.
[39] Guang Xuan, and Fu Fang-Wei, The average failure probabilities of random linear network coding, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E94-A, no.10, pp.1991-2001, 2011.
[40] Guang Xuan, Fu Fang-Wei,and Zhen Zhang, Construction of network error correction codes in packet networks, IEEE Transactions on Information Theory, Accepted for Publication.
以上是聚创考研网为考生整理的"南开大学陈省身数学研究所导师简介:符方伟"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。