考研院校库 > 集美大学 > 考研大纲 > 正文

集美大学2019年硕士研究生入学考试初试自命题​高等代数考试大纲

作者:聚创集大考研网-纪老师 点击量: 1174 发布时间: 2018-09-14 16:51 【微信号:扫码加咨询】

热门关键词:集美大学研究生,2019年硕士研究生,考试大纲,高等代数

 

据悉,集美大学2019年硕士研究生入学考试初试自命题高等代数考试大纲已公布,聚英集美大学考研网小编为你整理如下内容:

考试科目代码:[805]

考试科目名称:高等代数

一、考核目标

(一)考查考生对高等代数的基本概念、主要理论、重要方法的掌握程度。

(二)考查考生的数学抽象思维、逻辑推理及运算求解能力,提高分析问题、解决问题能力。

二、试卷结构

(一)考试时间:180分钟,满分:150

(二)题型结构

1、填空题:6小题,每小题5分,共30

2、解答题:7小题,每小题1520分,共120

三、答题方式

 闭卷笔试

四、考试内容

(一)多项式,20

考试内容:

整除理论、因式分解理论、根的理论。

考试要求:

1)理解带余除法、整除、最大公因式、互素、重因式、根等有关结论。

2)掌握不可约多项式的判别与证明、综合除法、标准分解式与有理根的求法。

3)理解矩阵或线性变换的多项式。

(二)行列式与线性方程组,20

考试内容:

行列式的计算、线性方程组解的理论。

考试要求:

1)理解行列式概念,掌握行列式的常用计算方法;了解行列式与方程组、可逆矩阵、矩阵秩、二次型、特征值等的关系。

2)理解线性方程组解的求法、判定与结构,掌握含参数线性方程组的讨论与求解,理解齐次方程组的基础解系或解空间与系数矩阵秩的关系。

(三)矩阵,20

考试内容:

矩阵的运算、矩阵的秩与矩阵的分解、分块矩阵及其初等变换的应用。

考试要求:

1)掌握矩阵的各种运算、矩阵的秩、可逆矩阵。

2)了解初等矩阵与初等变换的关系、矩阵分解、分块矩阵及其应用。

(四)二次型,20

考试内容:

标准形与规范形、正定问题。

考试要求:

1)掌握化二次型为标准形或规范形的方法、正定问题的判定与证明。

2)了解合同、负定、半正定的概念。

(五)线性空间,20

考试内容:

向量组的线性相关性、基、维数和坐标、子空间的和与直和。

考试要求:

1)了解线性空间的概念、性质以及同构思想。

2)理解向量组线性无关的常规证法,基与维数的求法与证明。

3)掌握子空间直和的证明。

(六)线性变换,20

考试内容:

线性变换的概念、线性变换的矩阵、相似、特征值特征向量与对角化、值域、核与不变子空间。

考试要求:

1)了解线性变换与方阵的同构对应关系。

2)理解线性变换、值域与核、不变子空间的概念。

3)会求线性变换在基下的矩阵,理解相似的概念与性质。

4)掌握特征值与特征向量的求法与证明,对角化问题的判别与讨论。

(七)Jordan标准形,10

考试内容:

最小多项式、Jordan标准形。

考试要求:

1)了解不变因子、初等因子的求法以及与矩阵相似的关系。

2)理解最小多项式的概念与基本性质,掌握Jordan标准形的求法与应用。

(八)欧氏空间,20

考试内容:

内积与标准正交基、正交变换和对称变换。

考试要求:

1)了解欧氏空间、正交补的概念,理解标准正交基的性质及其求法。

2)理解正交变换和对称变换的主要特征及相关证明,

3)掌握实对称矩阵的正交对角化的计算,利用实对称矩阵性质进一步讨论正定问题。

五、主要参考书目

(一)王萼芳,石生明主编:《高等代数》(第三版),高等教育出版社,2003

(二)徐仲等主编:《高等代数导教导学导考》,西北工业大学出版社2004

 


以上是聚创考研网为考生整理的"集美大学2019年硕士研究生入学考试初试自命题​高等代数考试大纲"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。

分享:
学习QQ群
MORE
浏览过该网页的还看了 MORE
聚创考研网校微信 聚创考研网校微信