厦门大学数学科学学院数学与应用数学系导师介绍:杨东勇
作者:聚创厦大考研网-小厦老师
点击量: 1062
发布时间: 2018-08-10 12:01
微信号: H17720740258
系别:
数学与应用数学系
办公室:536
教师:杨东勇
职称:副教授
职务:教师
Phone:0592-2580680
Email:
dyyang@xmu.edu.cn
研究方向:
调和分析
Dongyong Yang (杨东勇)
Education
2007.09-2010.07, Ph. D. in Basic Mathematics, Beijing Normal University
2004.09-2007.07, M. Sc. Basic Mathematics, Beijing Normal University
2000.09-2004.07, B. Sc. in Mathematics and Applied Mathematics, Beijing Normal University
Academic Experiences
Associate Professor, School of Mathematical Sciences, Xiamen University, 2013.08--present
Assistant Professor, School of Mathematical Sciences, Xiamen University, 2010.07--2013.07
Teaching
Caculus,
Engineering Mathematics,
Real Analysis
Research Interest
Harmonic Analysis
Research Projects
Real-variable theory of function spaces with non-doubling measures and their applications, 2016.1-2019.12, National Natural Science Foundation of China (No. 11571289)
Hardy spaces on non-homogeneous metric measure spaces and applications, 2013.1-2015.12, Natural Science Foundation of Fujian Province (No. 2013J01020),
Function spaces associated with magnetic Schrodinger operators and Bessel operators and their applications, 2012.1-2014.12, National Natural Science Foundation of China (No. 11101339)
Published Book:
The Hardy Space $H^1$ with Non-doubling Measures and Their Applications, with Da. Yang and G. Hu, Lecture Notes in Mathematics 2084, Springer-Verlag, Berlin,
2013, xiii+653 pp.
Selected Published Papers:
1. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrodinger operators, with Da. Yang and Y. Zhou, Potential Anal., 30(2009), 271-300.
2. A new characterization of $RBMO(\mu)$ by John-Stromberg sharp maximal functions, with G. Hu and Da. Yang, Czech. Math. J., 59(2009), pp. 159-171.
3. Endpoint estimates for homogeneous Littlewood-Paley $g$-functions with non-doubling measures, with Da. Yang, J. Funct. Spaces Appl., 7(2009), 187-207.
4. $h^1$, $bmo$, $blo$ and Littlewood-Paley $g$-functions with non-doubling measures, with G. Hu and Da. Yang, Rev. Mat. Iberoam., 25(2009), 595-667.
5. Characterizations of localized $\bmo(R^n)$ via commutators of localized Riesz transforms and fractional integrals associated to Schrodinger operators, with Da. Yang,Collect. Math., 61(2010), 65-79.
6. Localized BMO and BLO spaces on $RD$-spaces and applications to Schrodinger operators, with Da. Yang and Y. Zhou, Commun. Pure Appl. Anal., 9(2010), 779-812.
7. Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrodinger operators, with Da. Yang and Y. Zhou, Nagoya Math., 198 (2010), 77-119.
8. BMO-estimates for maximal operators via approximations of the identity with non-doubling measures, with Da. Yang, Canad. J. Math. 62 (2010), 1419-1434.
9. Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures, with Da. Yang, Georgian Math. J., 18 (2011), 377-397.
10. Real-variable characterizations of Hardy spaces associated with Bessel operators, with Da. Yang, Anal. Appl. (Singap.), 9 (2011), 345-368.
11. Atomic Hardy-type spaces between $H^1$ and $L^1$ on metric spaces with non-doubling measures, with L. Liu and Da. Yang, Acta Math. Sin. (Engl. Ser.), 27 (2011), 2445-2468.
12. Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations, with S. Liu and Da. Yang, J. Math. Anal. Appl., 386 (2012), 258-272.
13. The Hardy space $H^1$ on non-homogeneous metric spaces, with T. Hytonen and Da. Yang, Math. Proc. Cambridge Philos. Soc., 153(1), 9-23, 2012.
14. Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces, with T. Hytonen, S. Liu and Da. Yang, Canad. J. Math., 64(2012), 892-923.
15. Maximal function characterizations of Hardy spaces associated with magnetic Schrodinger operators, with R. Jiang and Da. Yang, Forum Math., 24 (2012), 471-494.
16. An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces, with H. Lin, Banach J. Math. Anal., 6 (2012), 168-179.
17. Hardy spaces associated with magnetic Schrodinger operators on strongly Lipschitz domains, with Da. Yang, Nonlinear Anal., 75 (2012), 6433-6447.
18. Boundedness of Calderon-Zygmund operators with finite non-doubling measures, with Da. Yang, Front. Math. China, 8 (2013), 961-971.
19. The Hardy space $H^1$ on non-homogeneous spaces and its applications|a survey, with X. Fu and Da. Yang, Eurasian Math. J., 4 (2013), 104-139.
20. The molecular characterization of the Hardy space $H^1$ on non-homogeneous metric measure spaces and its application, with X. Fu and Da. Yang, J. Math. Anal. Appl., 410 (2014), 1028-1042.
以上是聚英厦大考研网为考生整理的"厦门大学数学科学学院数学与应用数学系导师介绍:杨东勇"的相关考研信息,希望对大家考研备考有所帮助!
备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。