考研院校库 > 厦门大学 > 导师介绍 > 正文

厦门大学数学科学学院信息与计算数学系导师介绍:庄平辉

作者:聚创厦大考研网-小厦老师 点击量: 576 发布时间: 2018-08-10 14:17 微信号: H17720740258



  简介
  系别:
  信息与计算数学系
  办公室:651
  教师:庄平辉
  职称:教授
  职务:教师
  Phone:18959285820
  Email:
  zxy1104@xmu.edu.cn
  研究方向:
  微分方程数值方法及其理论分析,分数阶微分方程
  庄平辉,  信息与计算数学系教授, 硕士生导师.
  学习工作经历:
  1978-1982: 福州大学计算机科学系计算数学专业,获学士学位;
  1985-1988: 福州大学计算机科学系计算数学专业,获硕士学位;
  2005-2008: 厦门大学数学科学学院计算数学专业,获博士学位;
  2006年6月-2006年9月:澳大利亚昆士兰理工大学,访问学者;
  2009年7月-2009年12月:澳大利亚昆士兰理工大学,访问学者;
  2014年7月-2014年10月:澳大利亚昆士兰理工大学,访问学者;
  1982年-1985年 石油大学计算机科学系,助教;
  1988年4月至今:厦门大学数学科学学院,1988年晋升讲师,1998年晋升副教授。2012年晋升教授
  教学简介
  主讲过的课程:
  数学分析,数值逼近,数值代数,计算方法,高级语言程序设计,计算机实用技术,数据库管理,Visual Basic程序设计,高等数学,线性代数,Matlab基础等。
  编写的教材:
  [1]《高等数学精品课堂》(上,下册),林建华,庄平辉,林应标编著,厦门大学出版社出版,2007年11月。
  [2]《高等数学》(上,下册),林建华,杨世廞,高琪仁,许清泉,庄平辉,林应标编,北京大学出版社,2010-2011.
  [3]《高等数学学习指导》(上,下册),林建华,杨世廞,高琪仁,许清泉,庄平辉,林应标编,厦门大学出版社,2011-2012.
  获得的教学表彰和奖励:
  2009年厦门大学工商银行奖(教学类)。
  科研简介
  研究领域:
  微分方程数值方法及其理论分析,分数阶微分方程
  基金项目:
  [1]非结构网格谱元法及其应用,国家自然科学基金面上项目(11071203),项目组主要成员,2011-2013.
  [2] 分数阶扩散方程的数值方法及其理论分析,福建省自然科学基金,项目主持者,2005-2007.
  [3] 奇异摄动偏微分方程问题的数值方法及其应用,国家自然科学基金(10271098),项目组主要成员, 2003.1-2005.12.
  [4]谱元法湍流大涡模拟,国家自然科学基金, 项目组成员,2002.1-2004.12
  [5] 非线性发展方程及其科学计算,国家自然科学基金,项目组成员,1998.1-2000.12
  近年来发表的主要学术论文:
  [1]Feng, LB; Liu, FW , Turner, I; Zhuang, PH, Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates, International Joubnal of Heat and Mass Transfer, 115  B, 2017,  1309-1320.
  [2]L. B. Feng,P.Zhuang,F.Liu,I.Turner,V.Anh,J.Li,A fast second-order accurate method for a two-sided
  space-fractional diffusion equation with variable coefficients,Computers and Mathematics with Applications,73,2017,1155–1171.
  [3]P. Zhuang,F. Liu ,I. Turner,V. Anh,Galerkin finite element method and error analysis for the fractional cable equation,Numerical Algorithms, 72,2016,447–466.
  [4]L. B. Feng,P. Zhuang,F. Liu , I. Turner,Y. T. Gu,Finite element method for space-time fractional diffusion equation,Numerical Algorithms, 72,2016,749–767.
  [5]F. Liu, P. Zhuang, I.Turner, V. Anh, K.Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, Journal of Computational Physics,293, 2015, 252-263.
  [6]L.B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Applied Mathematics and Computation, 257, 2015,  52–65
  [7]Q. Liu, F. Liu, Y.T. Gu, P. Zhuang, J. Chen, I. Turner, A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation, Applied Mathematics and Computation, 256, 2015 930–938
  [8]Libo Feng, Pinghui Zhuang, Fawang Liu, Ian Turner and Qianqian Yang, Second-Order Approximation for the Space Fractional Diffusion Equation with Variable Coefficient, Progress in Fractional Differentiation and Applications, 1(1), 2015, 23-35
  [9]P. Zhuang, F. Liu, I. Turner, Y.T. Gu, Finite volume and ?nite element methods for solving a one-dimensional space-fractional Boussinesq equation, Applied Mathematical Modelling, 38,  2014, 3860–3870
  [10]F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional ?nite volume method for solving the fractional diffusion equation, Applied Mathematical Modelling, 38, 2014, 3871–3878
  [11]H. Zhang, F. Liu, P. Zhuang, I. Turner, V. Anh, Numerical analysis of a new space–time variable fractional order advection–dispersion equation, Applied Mathematics and Computation, 242, 2014, 541–550
  [12]Fawang Liu, Mark M. Meerschaert, Robert J. McGough, Pinghui Zhuang, Qingxia Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fractional Calculus and Applied Analysis,16(1),2013,9-25
  [13]F. Liu, P. Zhuang and K. Burrage, Numerical methods and analysis for a class of fractional advection–dispersion models, Computers & Mathematics with Applications, 64(10), 2012, 2990–3007.
  [14]Y. T. Gu and P. Zhuang, Anomalous sub-diffusion equations by the meshless collocation method, Australian Journal of Mechanical Engineering, 10(1), 2012, 1 - 8.
  [15] P. Zhuang, Y. T. Gu, F. Liu, I. Turner and P. K. D. V. Yarlagadda, Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method, International Journal for Numerical Methods in Engineering, Vol. 88, 13(2012),1346–1362.
  [16]Q. Liu, Y. T. Gu, P. Zhuang, F. Liu and Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Computational Mechanics, 48(2011), 1-12.
  [17]Y.T. Gu, P. Zhuang and Q. Liu, An advanced meshless method for time fractional diffusion equation, International Journal of Computational Methods, 8(4) (2011), 653-665.
  [18]Y. T. Gu, P. Zhuang and F. Liu,  An Advanced Implicit Meshless Approach for the Non-Linear Anomalous Subdiffusion Equation, Computer Modeling in Engineering & Sciences, 56(3)(2010), 303-334.
  [19]Ping-Hui  Zhuang and Qing-Xia LIU, Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative, Applied Mathematics and Mechanics, 30(12)(2009), 1533-1546.
  [20]P. Zhuang, F. Liu, V. Anh and I. Turner, Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process, IMA Journal of Applied Mathematics, 74(2009), 645-667.
  [21]P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. on Numerical Analysis, 47(3)(2009),1760-1781.
  [22]S. Chen, F. Liu, P. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling, 33 (2009) , 256-273.
  [23]P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. on Numerical Analysis, 46(2) (2008) ,1079-1095.
  [24]F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage , Stability and Convergence of the difference Methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 91, (2007), 12-20.
  [25]P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithms & Computational Technology, 1 (2007), 1-15.
  [26]P. Zhuang and F. Liu, Implicit difference approximation for the two-dimensional space-time fractional diffusion equation, J. Appl. Math. Computing, 25(2007), 269-282.
  [27]P. Zhuang, F. Liu, I. Turner and V. Anh, Numerical Treatment for the Fractional Fokker-Planck Equation, ANZIAM J., 48 (2007), 759-774.
  [28] Y. Lin, P. Zhuang and F. Liu, Fractional high order approximation for the system of the nonlinear fractional ordinary differential equations, Journal of Xiamen University(NATURAL Science),  6 (2007), 765-769.
  [29]J.  Song, F. Liu and P. Zhuang, An approximate solution for the non-linear anomalous subdiffusion equation using the Adomian decomposition method, Journal of Xiamen University (NATURAL Science), 46(4), (2007), 469-473.
  [30]P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Computing, 22(3) (2006), 87-99.
  [31]F. Liu, P. Zhuang, I. Turner, V. Anh, A fractional-order implicit difference approximation for the space-time fractional diffusion equation, 47, ANZIAM J. (E)(2006), 48-68.
  [32]P. Zhuang and F. Liu, An explicit difference approximation for the space-time fractional diffusion equation, Numerical Mathematics: A Journal of Chinese Universities, Vol. 27 Supplement (2005), 223-230.
  [33]F. Liu, V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E)(2004),  461-473.
  [34]T. Zheng, P. Zhuang, X. Cai and F. Liu, A Petrov-Galerkin method for singularly perturbed time-dependent convection-diffusion equations with non-smooth data, Computational Mechanics, ID-614(2004).
  [35]F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing, Vol. 13(2003), 233-245.
  国际会议论文:
  [1]P. Zhuang, F. Liu, V. Anh, I. Turner, The Galerkin finite element approximations of the fractional Cable equation,  The 5th Symposium on Fractional Differentiation and its Applications(FDA’12), May 14-17 2012, Hohai University, Nanjing, China.
  [2]P. Zhuang, F. Liu, V. Anh, I.Turner, Y. T. Gu, Two novel numerical methods of a space-fractional Boussinesq equation, 4th International Conference on Computational Methods (ICCM2012) , 25 - 28 November 2012, Crowne Plaza, Gold Coast, Australia.
  [3]F. Liu, P. Zhuang,  V. Anh, I.Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the two-sided space fractional diffusion equation with a variable coefficient,4th International Conference on Computational Methods (ICCM2012) , 25 - 28 November 2012, Crowne Plaza, Gold Coast, Australia.


以上是聚英厦大考研网为考生整理的"厦门大学数学科学学院信息与计算数学系导师介绍:庄平辉"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。

分享:
学习QQ群
MORE
浏览过该网页的还看了 MORE
聚创考研网校微信 聚创考研网校微信