考研院校库 > 厦门大学 > 导师介绍 > 正文

厦门大学数学科学学院数学与应用数学系导师介绍:王清

作者:聚创厦大考研网-小厦老师 点击量: 1153 发布时间: 2018-08-03 17:38 微信号: H17720740258



  系别:
  数学与应用数学系
  办公室:数理楼659
  教师:王清
  职称:教授
  职务:教师
  Phone:0592-2580651
  Email:
  qingwang@xmu.edu.cn
  研究方向:
  无穷维李代数,顶点代数


  Qing Wang

  ADDRESS
  School of Mathematical Sciences
  Xiamen University
  Xiamen, Fujian 361005
  China
  Email: qingwang@xmu.edu.cn
  EDUCATION
  2003-2008 Ph.D. Mathematics, Xiamen University
  Specialized in Lie algebras
  2007-2008 Visiting student, Rutgers University
  Specialized in vertex operator algebras
  2014-2015 Visting scholar, University of California at Santra Cruz
  EMPLOYMENT
  2008-2011 Assistant Professor, Xiamen University
  2011-2016 Associate Professor, Xiamen University
  2016-         Professor, Xiamen University
  Grants
  ? 2017/1-2019/12, China NSF grant(No.11622107)
  ? 2014/1-2017/12, China NSF grant(No.11371024)
  ? 2013/1-2015/12, The Natural Science Foundation of Fujian Province,
  China(No.2013J01018)
  ? 2013/1-2015/12, Fundamental Research Funds for the Central University,
  China(No.2013121001)
  ? 2011/1-2013/12, China NSF grant(No.11001229)
  ? 2010/1-2010/12, China NSF grant(No.10926040)
  ? 2009/1-2011/12, The Natural Science Foundation of Fujian Province,
  China(No.2009J05012)
  RESEARCH INTERESTS
  Infinite-dimensional Lie Algebras, Vertex  Algebras
  SELECTED PUBLICATIONS
  19.   Haisheng Li, Shaobin Tan and Qing Wang, Ding–Iohara algebras and quantum vertex algebras,Journal of Algebra, 511 (2018), 182-214.
  18. Haisheng Li, Shaobin Tan and Qing Wang, A certain Clifford-like algebra and quantum vertex algebras, Israel Journal of Mathematics, 216(2016),  441-470.
  17.  Chongying Dong and Qing Wang, Quantum dimensions and fusion rules for Parafermion vertex operator algebras, Proceedings of the American Mathematical Society, 144(2016), 1483-1492.
  16. Qing Wang, Automorphism group of Parafermion vertex operator algebras, Journal of Pure and Applied Algebra, 220(2016), 94-107.
  15. Fei Kong, Haisheng Li, Shaobin Tan and Qing Wang, Twisted modules for toroidal vertex algebras, Journal of Pure and Applied Algebra, 220(2016), 1681-1706.
  14.  Fulin Chen, Shaobin Tan and Qing Wang, Twisted $\Gamma$-Lie algebras and their vertex operator representations, Journal of Algebra, 442(2015), 202-232.
  13. Fei Kong, Haisheng Li, Shaobin Tan and Qing Wang, Simple toroidal vertex algebras and their irreducible modules, Journal of Algebra, 440 (2015), 264-316.
  12. Shaobin Tan, Qing Wang and Chengkang Xu, On whittaker modules for a Lie algebra arising from the 2-dimensional torus, Pacific Journal of Mathematics, 273(1) (2015), 147-167.
  11. Hongyan Guo and Qing Wang, Associating vertex algebras with the unitary Lie algebra, Journal of Algebra, 424 (2015), 126-146.
  10. Hongyan Guo, Haisheng Li, Shaobin Tan and Qing Wang, q-Virasoro algebra and vertex algebras, Journal of Pure and Applied Algebra, 219 (2015), 1258-1277.
  9. Hongyan Guo, Shaobin Tan and Qing Wang, Some categories of modules for toroidal Lia algebras, Journal of Algebra, 401 (2014), 125-143.
  8. Haisheng Li, Shaobin Tan and Qing Wang, On vertex Leibniz algebra, Journal of Pure and Applied Algebra, 217 (2013), 2356-2370.
  7. Haisheng Li, Shaobin Tan and Qing Wang, Toroidal vertex algebras and their modules, Journal of Algebra, 365 (2012), 50-82.
  6. Chongying Dong and Qing Wang, On C2-cofiniteness of parafermion vertex operator algebra, Journal of Algebra, 328 (2011), 420-431.
  5. Chongying Dong, Ching Hung Lam, Qing Wang and Hiromichi Yamada, The structure of Parafermion vertex operator algebras, Journal of Algebra, 323 (2010), 371-381.
  4. Chongying Dong and Qing Wang, The structure of parafermion vertex operator algebra: General Case, Communications in Mathematical Physics, 299 (2010), 783-792.
  3. Haisheng Li, Shaobin Tan and Qing Wang, Twisted modules for quantum vertex algebras, Journal of Pure and Applied Algebra, 214 (2010), 201-220.
  2. Haisheng Li and Qing Wang, On vertex algebras and their modules associated with even lattice, Journal of Pure and Applied Algebra, 213 (2009), 1097-1111.
  1. Qing Wang and Shaobin Tan, Quasifinite modules of a Lie Algebra related to Block type, Journal of Pure and Applied Algebra, 211 (2007), 596-608.
  TEACHING EXPERIENCE
  ? 2003-2006, Teaching Assistant for Abstract Algebra and Linear Algebra,
  Xiamen University
  ? 2007-2008, Teaching Assistant for Calculus, Rutgers University
  ? 2008-present, Instructor for Calculus, Abstract Algebra and Lie algebra, Algebra,
  Xiamen University

以上是聚英厦大考研网为考生整理的"厦门大学数学科学学院数学与应用数学系导师介绍:王清"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信H17720740258进行咨询。

分享:
学习QQ群
MORE
浏览过该网页的还看了 MORE
聚创考研网校微信 聚创考研网校微信